
PANEL SESSION ON SMARTGRIG

Bahram Honary

b.honary@lancaster.ac.uk

School of Computing and Communication Lancaster University, UK

Participant Example in the Future Smart Grid context

Conceptual Model derived from (NIST, 2010), Secure comm ——, Electrical Interface ————

Do we need broadband PLC in the network? Where?

Communication Channel Glass fibre Copper cable DLC/PLC Broadband **Broadband Markets** (Wholesale, Retail, Trading of energy services) **Operations** (Electricity flow Mgt to other domains) * * * Service Providers (data exchange, energy efficiency management through web porta) * * Generators (renewable, Nuclear, thermal, e.t.c.) * * * Transmission Grids (High Voltage, long distance) * * Distribution grids (Low Voltage, Short distance) * Customers(End users with smart meters. Can generate!)

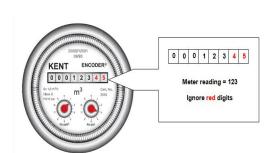
What are the (communications) requirements for grid control and AMR?

ER	k
	N
	-

	bandwidth (kbit/s)	traffic type	Max. Latency (s)	Max Jitter (ms)	BER	Network Recovery	Functional Unit	Concentration	Main use
AMR	5.3 (1)	Periodic	0.5	NA	NA	12 hrs	per	300	LV
							concentrator		
SCADA (Supervisory Control and Data Acquisition)	1,8-9,6	Random	0.5	NA	1E-06 - 1E-14 (2)	1 s	per	20	MV
							concentrator		
Operational Telephony	8	Random	0.5	30	1.00E-03	15s	per call		MV
Video surveillance	15-128	Random	1	NA	1.00E-04	NA	per camera		MV
Load Management , DSM,DSI		Periodic	1	NA	NA	1s			MV,LV
Software download / upgrade firmware	32	Random	NA	NA	NA	NA	per	300	MV,LV
							concentrator		
street lighting dimming & traffic control &	0.025	Random	300	NA		NA	group (32)	4	MV,LV
maintenance									

(1) 15 minutes interval	
(2) Residual error rate according IEC 60870	

What are the (communications) requirements for AMR?


AMR is a non time critical application:

All meters are read every 15 mins => 4(1hr/15mins) *24hr = 96 data packages/meter/day

Net Data Volume per meter is 2KBytes every 15 mins => (2*8*4)/(60*60) = 17.77 bits/s/meter

For 300 Meters per transformer => The Data Rate is:

17.77*300 = 5333.33bits or **5.3Kbits/s**

