Reliable Power Line Communication

- A Vehicle to Smart Meter, Smart Home and Smart Grid

www.ti.com/smartgrid

- Power Line Communication for smart meter, home and grid
- Key Challenges and Requirements
- Select Scalable PLC Solutions
- Future PLC Research Areas

Power Line Communication for Smart Meter, Smart Home and Smart Grid

PLC Is Key Technology in Meter, Home, Grid

Smart Meters

Smart Grid infrastructure

- Data Concentrators
- Medium/High Voltage
 Backbone Network
- •Repeaters/Gateways

- eMeter COM module
- RF/PLC Gateway
- RF/PLC Combo

module

- eMeter to smart
 appliances
- In-home display
- &Thermostats coms
- Sensor Network

backbone/overlay

• EV/EVSE

PLC for Smart Meter Application

PLC For Hybrid Sensor Networks

Further increase **robustness** 💓 and **scalability** of sensor networks for smart home too color 冷やしすぎ to hot た遠が薄く、人の動き も少なく記念が伝い 暴すぎ 商目などの外気濃の 個別に空間を制得 影響をつける 事内を一定温度に保 Wireless NIC PLC NIC 別の温度に急て実施 暑すぎ peator Eなどの熱源設備が CAMPLE **宽温**师上昇する 別の温倉計測で実際 >通信では「信な」活会・新聞 することでフロア全体 複合環境 就業環境による空温差を無くして **PLC/RF** combo 冷やしすぎ 冷やしすぎ フロア全体を一定温度に保ちたい。 出入时口前近く しの出入りが少なく 温小影響を受ける 容据为4602 国際に空話を制度し 開始の温度設定で 空内を一定温度に保つ 快適室内に

A wireless sensor network use-case from Panasonic

Smart Grid Rejuvenates the PLC

PLC Solutions from the Smart Grid to the Home

Key Challenges and Requirements

Scalable PLC Technology for Future SG

- Focus on frequencies <500KHz
 - Propagation, cost, Reliability
- Meet country specific regulations
 - EMC / emissions
 - ARIB, FCC, CENELEC
- PLC network throughput/stability/capacity
 - Network topologies and coverage
 - Meter reading success rate
 - Deal with difficult locations
 - Error recovery
- Physical Characteristics
 - Band agility and cognition
 - OFDM based technology
 - Understand channel model
- Deal with Variations
 - Variable standards
 - Variable geographical features
 - Variable application frameworks

- Europe: CEN-A for utility
- Japan: ARIB 10kHz 450kHz
- US, China, India: FCC 3kHz 500kHz

MV-LV crossing Transformer Channel Model

G3-ROBO in CEN-A 36 Field Tests in Tangshan, China

					PHY Test			
					Transformer ->Terminal	PHY Test	Message Transfer	Message Transfer
					ROBO A-36, TX Level: 32	Terminal ->Transformer	Transformer-> Terminal	Terminal ->Transformer
TX Phase	RX Phase	Time	RX Row	Distance		Robo, A-36, TX level:32	Robo, A-36, TX level:32	Robo, A-36, TX level:32
					BER:0	BER:0		
С	С	10:50AM	12	30m	FER:0	PER:0	Yes	Yes
					BER:0	BER:0		
С	B	11:00AM	13	50 m	PER:0	PER:0	Yes	Yes
					BER:0.13%			
С	В	11:07AM	14	70m	PER:4.5%	Can not communicate	Yes	No
					BER:0%			
A	A	11:12AM	15	90m	PER:0%	Can not communicate	Yes	No
					BER:23%			
A	В	11:30AM	16	110m	PER:100%	Can not communicate	No	No
					BER:1%			
A	A	11:37AM	17	130m	PER:25%	Can not communicate	Yes	No
Α	Α	11:44AM	19	150m	Can not communicate	Can not communicate	No	No
					BER:0%	BER:0%		
В	В	13:39PM	18	170m	PER:0%	PER:0%	Yes	Yes
					BER:0%	BER:0%		
Α	Α	13:49PM	19	190m	PER:0%	PER:0%	Yes	Yes
					BER:0%			
В	В	14:00PM	21	210m	PER:0%	Can not communicate	Yes	No
					BER: 0%			
В	В	17:20PM	14	70m	PER: 0%	Can not communicate	Yes	No
					BER: 0%			
A	Α	17:35PM	15	90m	PER: 0%	Can not communicate	Yes	No
					BER:0			
C	В	17:45PM	13	50m	PER:0	Can not communicate	Yes	No
					BER:0			
В	В	17:50PM	13	50m	PER:0	Can not communicate	Yes	No
					BER:0	BER:0		
В	B	17:55PM	13	50 m	PER:0	PER:0	Yes	Yes
					BER:0			
В	В	18:00PM	14	70m	PER:0	Can not communicate	Yes	No
					BER:0			
В	В	18:15PM	NA	140m	PER:0	Can not communicate	Yes	No

- Channel Asymmetric Feature
- Time Variations
- Band agility, Tone Mask Settings

TI PRIME Meters in Burriana, Spain

- Network Capacity: Maximum number of meters supported in single AMI network
- Connectivity: >99%
- Meter Reading Success Rate: >99%
- Routing efficiently: max number of hops
- Network Stability

Multiple PLC Standards Comparisons

Parameter	IEC61334 S-FSK	PRIME(OFDM)	G3(OFDM)	P1901.2(OFDM)
Modulation Size	Spread Frequency Shift Keying	DBPSK / DQPSK/D8PSK	DBPSK / DQPSK/D8PSK	DBPSK/DQPSK/D8PSK/ Coherent Modulation
Forward Error Correction	N/A	Rate ½ convolutional Code	Outer RS + inner rate ½ convolutional code	Outer RS + inner rate ½ convolution code
Data Rate	2.4Kbps	21, 42, 64, 84, 128 Kbps (w/ and w/o coding)	20.36, 34.76, 46 Kbps (with coding)	Scalable up to 250Kbps
Band plan	CENELEC-A	Continuous 42-89 KHz (defined for LV scenario)	36-91 KHz with tone masking for SFSK	CENELEC/FCC band
ROBO Mode	Νο	No	Yes	Yes
Tone Mask	No	No	Yes	Yes
Adaptive Tone Map	Νο	No	Yes	Yes
MAC	IEC61334 MAC	PRIME MAC	802.15.4/G3 profile	802.15.4 based
Convergence Layer	IEC61334-4-32	IEC61334-4-32/IPv6	6LoWPAN/IPv6	6LoWPAN/IPv6

A Single HW Platform Can Support them All?

Select Scalable PLC Solutions

Selecting the Best PLC Technology for Scalability

• NB OFDM

- Standards momentum
- R&D investment
- Flexible bandwidth
- Low MIPS frequency domain processing for interference mitigation
- OFDM vs. Single Carrier
 - n*log(n) vs. n² MIPS
 - Frequency domain processing
 - Scale bandwidths, #subcarriers
 - Frequency domain sync
 - Single carrier, short symbols, higher overhead in MCU/DSP
 - Higher PAR, but averaged transmit power is similar

• OFDM Software

- Full reuse of software libraries
- Software portable between MCU family members: low cost vs. high performance

Narrowband OFDM Technologies

Application-specific Instructions in OFDM MCU

• OFDM MCU Provides:

- Special instructions to accelerate PLC
 - FEC computations (Viterbi acceleration, Galois field arithmetic)
 - FFT/IFFT acceleration
 - Complex arithmetic
 - Security engine (CRC, other instructions to accelerate AES computations)
- Instructions accelerate frequently used computations (90% of the computations are in 10% of the functions)

• Benefits

- Competes with custom ASIC in terms of cost and power dissipation while achieving full programmability
- Lower cost and power than a general purpose DSP / MCU
- Ability to evolve implementations as PLC standards evolve

TI PLC Development Kit

TI Narrowband PLC Solution Flexible, scalable and easy to customize

- **Flexible Hardware**: Single HW Digital + AFE support
 - Frequency (0-500KHz)
 - C2000 family: F2806x for CEN-A, F28M35x for FCC
 - AFE030/AFE031: CEN-A/B/C/D, AFE032: FCC
- Complete SW Package Development Kit: plcSUITE
 - Standards: PRIME, G3, P1901.2, IEC61334 (S-FSK)
 - Open platform with certified SW Libs
- Support Customization: FlexOFDM

Future Research Areas

PLC Future Research Areas

- Smart Grid PLC:
 - Further mature deployment of MV-LV transformer crossing technology
 - Use of NB PLC for MV-MV WAN Usage to Connect DC to Substation or Meter to Substation
 - Connect Grid Heath Sensor Cloud
 - Cognitive PLC for band agility
- Smart Home PLC:
 - PLC control network integrated with sensing or monitoring network
 - PLC/RF combo node for extrarobustness and lower power sensing
- PLC Channel Modeling Study

Grid Sensor Cloud

Conclusion

- Narrow Band OFDM Based PLC provides solution for future smart meter, home, grid applications
- International standards (PRIME, G3, IEEE P1901.2, G.9955/56) all supports NB OFDM based PLC
- A flexible, multi-standard enabled PLC solution provides best return on investment
- As PLC narrow band gaining the market acceptance, new application areas are evolving: EV/EVSE, lighting, industrial/home automation, etc.
- PLC needs to be continuously evolving for more and more robust to meet all these application requirements

